最近在幻角扭曲双层石墨烯1,2中发现的平坦电子带和强关联超导相主要取决于层间扭转角θ。虽然已经证明了以大约0.1度的精度控制全局θ1、2、3、4、5、6、7,但是关于局部扭角分布的信息很少。在这里,我们使用一个纳米尺度的尖端扫描超导量子干涉器件(SQUID-ON-TIP)8来获得量子霍尔态9中朗道能级的层析图像,并绘制了六角形氮化硼封装的θ局域变化图,其相对精度优于0.002度,空间分辨率为几个莫尔周期。我们发现θ无序的程度与物质基团输运特性的质量之间存在相关性,并表明即使是最先进的设备--呈现关联态、朗道扇形和超导电性--在θ中也表现出高达0.1度的相当大的局部变化,表现出实质性的梯度和跳跃网络,并且可能包含没有局部物质基团行为的区域。我们观察到,相对于扭角无序,MATBG中的关联态是特别脆弱的。我们还发现,θ的梯度产生了很大的栅极可调的面内电场,即使在金属区域也没有屏蔽,这通过在样品中形成边缘通道而深刻地改变了量子霍尔态,并可能影响相关态和超导态的相图。因此,我们确定了θ无序作为一种非传统类型的无序的重要性,使得扭角梯度能够用于带结构工程、相关现象的实现以及用于器件应用的栅极可调谐的内置平面电场。
支持本研究结果的数据可在合理要求下从相应的作者处获得。
1.曹勇等人。魔角石墨烯超晶格中半填充态的关联绝缘体行为…[中国核科技信息与经济研究院]。自然556,80-84(2018年)。
2.曹勇等人。幻角石墨烯超晶格中的非常规超导电性。自然556,43-50(2018年)。
3.Yankowitz,M.等人。扭曲双层石墨烯中超导电性的调谐。科学363,1059-1064(2019年)。
4.Serlin,M.等人。莫尔异质结构中的本征量子化反常霍尔效应。科学367,900-903(2019年)。
5.夏普(Sharpe,A.L.)等人。扭曲的双层石墨烯填充近四分之三的浮现铁磁性。科学365,605-608(2019年)。
6.Tomarken,S.L.等人。幻角石墨烯超晶格的电子压缩性。太棒了。莱特牧师。123,046601(2019年)。
7.Lu,X.等人。魔角双层石墨烯中的超导体、轨道磁体和关联态。自然574,653-657(2019年)。
8.Vasyukov,D.等人。具有单电子自旋灵敏度的扫描超导量子干涉器件。纳特。纳米技术。8,639-644(2013)。
9.Uri,A.等人。石墨烯中平衡量子霍尔边缘电流和磁单极响应的纳米尺度成像。纳特。太棒了。16、164-170(2020)。
10.Suárez Morell,E.,Correa,J.D.,Vargas,P.,Pacheco,M.&Amp;Barticevic,Z.轻微扭曲的双层石墨烯中的平带:紧束缚计算。太棒了。B修订版82,121407(2010年)。
11.扭曲双层石墨烯中的Bistritzer,R.&;MacDonald,A.H.Moiré带。程序。纳特·阿卡德。SCI。美国第108,12233-12237(2011年)。
12.Lope dos Santos,J.M.B.,Peres,N.M.R.&Amp;Castro Neto,A.H.扭转石墨烯双层连续模型。太棒了。B修订版86,155449(2012年)。
13.Moon,P.&Amp;Koshino,M.扭曲双层石墨烯的光吸收。太棒了。版本B 87,205404(2013年)。
14.NaM,N.T.&Amp;Koshino,M.扭曲双层石墨烯的晶格弛豫和能带调制。太棒了。B修订版96,075311(2017年)。
15.Yoo,H.等人。扭曲双层石墨烯范德华界面的原子和电子重构。纳特。玛塔。18448-453(2019年)。
16.Huder,L.等人。异质应变下扭曲石墨烯薄膜的电子光谱。太棒了。莱特牧师。120、156405(2018年)。
17.毕振中、袁宁芳、傅安普、L.按应变设计扁平带材。太棒了。B修订版100,035448(2019年)。
18.Li,G.等人。扭曲石墨烯层中范霍夫奇点的观察。纳特。太棒了。6,109-113(2010)。
19.Brihuega,I.等人。通过扫描隧道显微镜和理论分析,揭示了扭曲双层石墨烯中范霍夫奇点的本质和健壮性。太棒了。莱特牧师。109,196802(2012年)。
20.Wong,D.等人。栅极可调谐扭曲双层石墨烯中莫尔诱导电子结构的局域光谱。太棒了。B修订版92,155409(2015年)。
22.。Kerelsky,A.等人。扭曲双层石墨烯中魔角电子相互作用的最大化。自然572,95-100(2019年)。
23.。Choi,Y.等人。魔角附近扭曲双层石墨烯中的电子关联。纳特。太棒了。15、1174-1180(2019年)。
24.。谢勇等人。魔角扭曲双层石墨烯多体关联的光谱特征。自然572,101-105(2019年)。
25.。Alden,J.S.等人。双层石墨烯中的应变孤子和拓扑缺陷。程序。纳特·阿卡德。SCI。美国第110,11256-11260(2013年)。
26.。Lin,J.等人。双层石墨烯中的AC/AB堆积边界。奈米·莱特。13,3262-3268(2013)。
28.。曹勇等人。扭曲双层石墨烯中的超晶格诱导绝缘态和谷保护轨道。太棒了。莱特牧师。117,116804(2016年)。
29.。Kim,K.等人。具有高精度旋转排列的范德华异质结。奈米·莱特。16,1989-1995(2016)。
31.。Hejazi,K.,Liu,C.&Amp;Balents,L.Landau在扭曲的双层石墨烯和半经典轨道中的能级。太棒了。B修订版100,035115(2019年)。
32.。张永华,宝华,H.C.&Amp;Senthil,T.Landau扭曲双层石墨烯的能级简并:对称性破缺的作用。太棒了。B修订版100,125104(2019年)。
33.。Kim,K.等人。小扭角双层石墨烯中的可调谐莫尔带和强关联。程序。纳特·阿卡德。SCI。美国114,3364-3369(2017)。
34.。Wang,L.等人。与二维材料的一维电接触。科学342,614-617(2013)。
35.。Anahory,Y.等人。具有单电子自旋灵敏度的尖端SQUID,用于高场和超低温纳米磁成像。纳米级12,3174-3182(2020)。
36.。Huber,M.E.等人。DC SQUID系列120 MHz带宽阵列放大器。IEEE传输。APPL。Supercond。11,1251-1256(2001)。
37.。Finkler,A.等人。在尖端扫描超导量子干涉装置,用于纳米尺度现象的磁成像。科学牧师。仪器公司。83,073702(2012年)。
38.。Finkler,A.等人。尖端上的自对准纳米级鱿鱼。奈米·莱特。10,1046-1049(2010)。
39.。Lachman,E.O.等人。磁性拓扑绝缘子中超顺磁动力学的可视化研究…[中国核科技信息与经济研究院]。SCI。Adv.1,e1500740(2015)。
40.。Halbertal,D.等人。量子系统中耗散的纳米尺度热成像。《自然》539,407-410(2016)。
41.。Kleinbaum,E.&Amp;Csáthy,G.A.注:用于远程放置的石英音叉的跨阻放大器。科学牧师。仪器公司。83,126101(2012年)。
42.。Geller,M.R.&Amp;Vignale,G.二维电子气的可压缩和不可压缩区域的电流。太棒了。B修订本50,11714-11722(1994年)。
43.。金、P·石墨烯和相对论量子物理。在狄拉克物质(edds Duplantier B.,Rivasseau V.&;Fuchs J.N.)1-23(Birkhäuser,2017)。
44.。Dean,C.R.等人。用于高质量石墨烯电子产品的氮化硼基板。纳特。纳米技术。5722-726(2010)。
45.。Martin,J.等人。用扫描单电子晶体管观察石墨烯中的电子空穴坑…[中国核科技信息与经济研究院]。纳特。太棒了。4,144-148(2008)。
46.。Lope dos Santos,J.M.B.,Peres,N.M.R.&Amp;Castro Neto,A.H.石墨烯双层与扭曲:电子结构。太棒了。莱特牧师。99,256802(2007年)。
47.。旋转断层多层石墨烯中的局域子晶格对称性破缺。太棒了。版本B 83,045425(2011年)。
48.。无公度原子层的电子性质。J.Phys.。SoC。Jpn.。84,121001(2015年)。
49.。Koshino,M.等人。扭曲双层石墨烯的最大局域Wannier轨道和扩展的Hubbard模型。太棒了。版本X 8,031087(2018年)。
50.。肖丹,张明昌,牛明昌,Q.Berry,相位效应对电子性质的影响。牧师。太棒了。82,1959-2007(2010)。
51.。Bistritzer,R.&;MacDonald,A.H.莫尔蝴蝶在扭曲的双层石墨烯中。太棒了。B修订版84,035440(2011年)。
52.。扭曲双层石墨烯的能谱和量子霍尔效应。太棒了。版本B 85,195458(2012年)。
53.。Mireles,F.&Amp;Schliemann,J.具有自旋-轨道相互作用的双层石墨烯的能谱和朗道能级。新J.Phys.。14,093026(2012年)。
我们感谢A.S.Stern和E.C.Berg进行了有价值的讨论,感谢M.C.F.Bda和Silva构建了COMSOL仿真。这项工作得到了萨戈尔威斯康星-麻省理工学院桥梁计划、欧盟2020年地平线研究和创新计划下的欧洲研究理事会(赠款编号785971)、以色列科学基金会(赠款编号994/19)、密涅瓦基金会(由德国联邦教育和研究部资助)以及利昂娜·M·M和哈里·B·赫尔姆利慈善信托基金(赠款编号2018PG-ISL006号)的支持。Y.C.,P.J.-H.和E.Z.感谢MISTI(麻省理工学院国际科学和技术倡议)麻省理工学院-以色列种子基金的支持。麻省理工学院的工作得到了国家科学基金会(NSF,批准号:DMR-1809802),国家自然科学基金综合量子材料中心,批准号:DMR-1231319和戈登和贝蒂·摩尔基金会的EPiQS倡议。GBMF4541至P.J.-H.用于器件制造、传输测量和数据分析。这项工作的一部分是在哈佛大学纳米系统中心进行的,该中心是国家纳米技术协调基础设施网络(Nnci)的成员,该网络由国家科学基金会根据美国国家科学基金会ECCS奖1541959号提供支持。D.R.-L承认来自FundacióBancaria‘la Caixa’(Lcf/BQ/AN15/10380011)和美国陆军研究办公室给予的部分支持。W911NF-17-S-0001。M.K.感谢JSPS KAKENHI赠款编号的财政支持。JP17K05496。J.A.C.和P.M.获得了上海市科学技术委员会19ZR1436400号基金、纽约大学-华东师范大学上海分校物理研究所和纽约大学全球种子合作研究基金的支持,这两个项目都得到了上海市科学技术委员会19ZR1436400号基金、纽约大学华东师范大学物理研究所和纽约大学全球合作研究种子基金的支持。J.A.C感谢中国国家科学基金11750110420号资助。本研究是针对纽约大学上海分校的高性能计算资源进行的。K.W.和T.T.感谢日本MEXT进行的基本战略倡议、JSPS的A3展望和JST的CREST(JPMJCR15F3)的支持。
A,器件A的光学图像,显示hBN/MATBG/hBN(绿色)、下面的PdAu后门(浅棕色)和用于四探针Rxx测量的标记电极。B,带有标记电极的PdAu后门(浅蓝色)上的器件B(青色)的光学图像。
A,四探针测量设备A中Rxx(V BG)与Ba的关系,使用10nA的励磁电流,底部有对应的Landau扇形图轨迹。绿色实线表示可在数据中追踪的线段,虚线表示它们对原点的外推。B,如在设备B的A中。紫色标记Rxx信号略微为负的区域。
在低场下,使用R.M.S测量在-n s/2附近测量的Rxx的A、B、B、颜色呈现,而不是B、A和N。装置A(A)中的励磁电流为5nA,装置B(B)中的励磁电流为4nA。使用R.M.S在器件B中观察到零电阻超导状态(黑色),在器件B中的超导状态下,在不同载流子浓度Ne下,dV/dI随IDC特性的变化而变化。交流电。激发Iac=110nA。
A,在\(\Δ{{\bf{y}\)方向上携带Iy_y=μ_A的50 nm宽通道的电流分布J_y(x_y_(X_0))。B,计算出样品上方70 nm高度处的SOTBz(x=0-1×0),与直径为2 2 0 nm的−传感区域缠绕在一起。C,计算出R.M.S.的\({B}_{z}^{{\rm{ac}(x-{x}_{0})\)。\({x}_{0}^{{\rm{ac}\)通道位置的空间调制=1.54 nm。虚线轮廓对应于携带相同电流的宽度为Δx x=1150 nm的电流条带,表明空间分辨率受到SOT直径的限制。d-f,如在a-c中,但对于间隔150 nm的三个反向传播电流。G,不可压缩条带的\({B}_{z}^{{\Rm{Ac}峰的分析。({B}_{z}^{{\rm{ac}(X)\)信号(蓝色)沿图中所示的线采集。对于V BG,3A=−10.54V(图中的一条垂直线。2A)显示ν=−12不可压缩峰值,以及数值拟合(红色)。拟合采用实验值{V}{{\rm{bg}^{{\rm{ac}和SOT直径,拟合参数为不可压缩带中总电流的单一拟合参数,得到IT0=11.3tμA。拟合使用的是宽度为Δx x=50 nm的不可压缩带。从数据中减去平均值\({B}_{z}^{{\rm{ac}(X)\)。({B}{z}^{{Rm{Ac}(X))远离峰位的不对称性是由于相邻可压缩条中存在密度较低的逆流非拓扑流造成的。
回旋孔洞的回旋轨道与相邻电流相互抵消的半经典图像,导致零体电流。B,在面内电场Ex(+和−符号表示外部电荷)存在的情况下,回旋轨道获得漂移速度,导致不可压缩状态下的非零({J}{y}^{{\rm{T})。c,在可压缩区域,通过建立电荷密度梯度来屏蔽外部面内电场,使({J}{y}^{{\rm{nt})沿相反方向(青色箭头)流动。在可压缩区域,通过建立电荷密度梯度来屏蔽外部面内电场,从而产生反方向(青色箭头)的({J}{y}^{{\rm{nt})。
A,设备A中的\(-{B}_{z}^{{\Rm{Ac}\)相对于V BG的轨迹(见图2)。1F)用步长ΔV BG=44.7百万毫伏和R.M.S获得。\({V}_{{\rm{bg}^{{\rm{ac}\)n=2.15 mV。可以确定\({V}{{\rm{bg}^{N=-3}}和\({V}{{\rm{bg}^{N=-4}\)峰的位置,其精度优于±ΔV bg(一个步长),对应于θ的相对精度δθ=1±0.0002°。b,如a所示,取自补充视频1的像素位置(x,y)=(2.53gμm,55.9gμm),步长为ΔV bg=2.40g MV和R.M.S.。({V}_{{\rm{bg}^{{\rm{ac}\)mV=0.35 mV,在成像模式下,θ的相对精度为δθ=±0.002°。与a相比,b中较大的\({B}_{z}^{{\rm{ac}\)信号和较宽的iT峰是由于较大的\({V}{{\rm{bg}^{{\rm{ac}\)激发(参见方法部分“测量参数”)。
全局Rxx(紫色,右轴)和局部\({B}_{z}^{{\rm{ac}\)(蓝色,左轴)在器件主体A的某一点测量,与Ba=111.19T处的电子密度ne的关系。尖锐的\({B}_{z}^{{\rm{ac}\)峰值反映了不可压缩条带中的电流,符号由σyx的符号决定,大小由Landau决定。色散带以黄色阴影,平坦带中的信号被放大六倍以保证清晰度。
A,沿着设备A的各个平面的3D数据集\({B}_{z}^{{\rm{ac}(x,y,{V}_{\rm{bg}})}\)的切片。明亮的信号表示跟踪不可压缩状态的2D流形。黑线追踪用于确定n,s(x,y)和−(x,y)的N_s=θ_4不可压缩流形。它将其下方的四倍简并朗道能级与其上方的八倍简并朗道能级(宽的深蓝色波段)分开。样本中心没有显示朗道能级的区域对应于图中的灰蓝色区域。3B,其中没有解决MATBG物理。B,补充视频1中数据的代表性水平切片,显示了朗道能级随V BG的演变。C,如在a中,对于器件B。对于所示的栅极电压范围,εF位于整个样品的p色散带中。黑线显示了位于八倍简并朗道能级之上的不可压缩流形的踪迹的一个例子。D,来自补充视频的数据的代表性水平切片。3.在参考文献30中提供了用于数据的层析可视化的交互界面。
图中δn d(R)数据的直方图。3H,以及具有标准偏差的高斯拟合(黑色):Δn d−=22.59亿×1010亿厘米X2。
对于固定的θ=111.05°,数值计算了朗道能级能随磁场的变化。示例标高交叉点以红色高亮显示。B,数值计算了固定Ba=11.22T时朗道能级能量作为θ的函数。一个能级交叉的例子用红色突出显示。
该视频在以−V bg=0.1V的粗略步长扫描V bg=−16.4至Δ17.0V时,在设备A的p色散带中呈现了一系列大面积的\({B}_{z}^{{Ac}}\)图像(参见方法中的测量参数)。在此范围内,εF位于对应于|n e|≈1.7nS(见图2A)的p色散带中相对较高的位置。设备的边缘由黑线表示,视频的第一帧在图3A中描述。视频显示了随着空穴浓度的增加,可压缩(浅蓝色到红黄色)和不可压缩(深蓝色)条带的演变。请注意,样本的大部分,包括整个顶部、左下角区域和中心包含气泡的较小区域,根本不显示LLS和MATBG物理。这些区域是高度无序的,或者有非常不同的扭曲角度。
这两个视频显示了设备B中p和n个色散带中LLS的演变(参见方法中的测量参数)。对补充视频3中的数据进行否定,以便。
..