25年来首次实现最小切割算法的运行时改进(2019)

2021-01-11 16:32:32

下载PDF摘要:我们提供了一种随机算法,该算法可以在$ O(m \ log ^ 2 n)$时间内以高概率找到无向加权$ m $-边$ n $-顶点图$ G $中的最小割。这是对1996年Karger著名的$ O(m \ log ^ 3 n)$时间算法的首次改进。我们的主要技术贡献是确定性的$ O(m \ log ^ 3n)$时间算法,该算法具有$ G $的树$ T $,找到了$ G $的最小截距,该截距2尊重(截断了$ T $的两个边)。

从:Oren Weimann [查看电子邮件] [v1] 2019年11月4日星期一11:53:33 UTC(84 KB)[v2] 2019年11月7日星期四08:48:43 UTC(84 KB)[v3] 16月星期一2019年12月10:25:38 UTC(85 KB)[v4] 2020年3月23日星期一06:13:03 UTC(96 KB)[v5] 2020年8月3日星期一09:18:18 UTC(86 KB)

关于arXivLabs arXivLabs是一个允许合作者直接在我们的网站上开发和共享新的arXiv功能的框架。

与arXivLabs合作的个人和组织都已经接受并接受了我们的开放,社区,卓越和用户数据隐私价值。 arXiv致力于这些价值观,并且仅与遵守这些价值观的合作伙伴合作。

有一个可以为arXiv社区增加价值的项目的想法吗?了解有关arXivLabs以及如何参与的更多信息。

书目工具代码推荐